Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent.

نویسندگان

  • G Gruden
  • S Zonca
  • A Hayward
  • S Thomas
  • S Maestrini
  • L Gnudi
  • G C Viberti
چکیده

Hemodynamic abnormalities are important in the pathogenesis of the excess mesangial matrix deposition of diabetic and other glomerulopathies. p38-Mitogen-activated protein (MAP) kinase, an important intracellular signaling molecule, is activated in the glomeruli of diabetic rats. We studied, in human mesangial cells, the effect of stretch on p38 MAP kinase activation and the role of p38 MAP kinase in stretch-induced fibronectin and transforming growth factor-beta1 (TGF-beta1) accumulation. p38 MAP kinase was activated by stretch in a rapid (11-fold increase at 30 min, P < 0.001) and sustained manner (3-fold increase at 33 h, P < 0.001); this activation was mediated by protein kinase C (PKC). Stretch-induced fibronectin and TGF-beta1 protein levels were completely abolished (100% inhibition, P < 0.001; and 92% inhibition, P < 0.01, respectively) by SB203580, a specific p38 MAP kinase inhibitor. At 33 h, TGF-beta1 blockade did not affect stretch-induced fibronectin production, but partially prevented stretch-induced p38 MAP kinase activation (59% inhibition, P < 0.05). TGF-beta1 induced fibronectin accumulation after 72 h of exposure via a p38 MAP kinase-dependent mechanism (30% increase over control, P < 0.01). In human mesangial cells, stretch activates, via a PKC-dependent mechanism, p38 MAP kinase, which independently induces TGF-beta1 and fibronectin. In turn, TGF-beta1 contributes to maintaining late p38 MAP kinase activation, which perpetuates fibronectin accumulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiotensin-(1-7) activates growth-stimulatory pathways in human mesangial cells.

Angiotensin-(1-7) [Ang-(1-7)] is generated in part via ACE2-dependent degradation of angiotensin II (ANG II). In proximal tubular cells, Ang-(1-7) inhibits ANG II-stimulated phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-related kinase (ERK1/ERK2), and c-jun N-terminal kinase (JNK), suggesting that Ang-(1-7) protects against ANG II-mediated tubulointe...

متن کامل

Hepatocyte growth factor antagonizes the profibrotic action of TGF-beta1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF.

Mesangial cell activation is a predominant pathologic feature of diabetic nephropathy that precedes the accumulation of extracellular matrix leading to glomerulosclerosis. For understanding the potential mechanism by which hepatocyte growth factor (HGF) ameliorates diabetic nephropathy, the effects of HGF on mesangial cell activation induced by TGF-beta1 were investigated. Western blot analysis...

متن کامل

Potential role of active vitamin D in retarding the progression of chronic kidney disease.

induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes 2000; 49: 655–661 20. Cortes P, Mendez M, Riser BL et al. F-actin fiber distribution in glomerular cells: structural and functional implications. Kidney Int 2000; 58: 2452–2461 21. Burt DJ, Gruden G, Thomas SM et al. P38 mitogen-activated prote...

متن کامل

Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542.

Transforming growth factor beta1 (TGF-beta1) is a potent fibrotic factor responsible for the synthesis of extracellular matrix. TGF-beta1 acts through the TGF-beta type I and type II receptors to activate intracellular mediators, such as Smad proteins, the p38 mitogen-activated protein kinase (MAPK), and the extracellular signal-regulated kinase pathway. We expressed the kinase domain of the TG...

متن کامل

Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells.

Discoidin domain receptor 2 (DDR2) plays potential roles in the regulation of collagen turnover mediated by smooth muscle cells in atherosclerosis. How mechanical stretch affects the regulation of DDR2 in smooth muscle cells is not fully understood. We sought to investigate the cellular and molecular mechanisms of regulation of DDR2 by cyclic stretch in smooth muscle cells. Rat vascular smooth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 49 4  شماره 

صفحات  -

تاریخ انتشار 2000